С чем мендель проводил опыты. Эксперименты менделя. Памятка о проведении экспериментов

Ботаника. Цикл статей “Удивительные опыты с растениями”

Газета “Биология”, №3, 2000 г.

41. Опыт с зеленой горошиной

Этот опыт впервые был поставлен крупнейшим исследователем проблемы раздражимости растений индийским ученым Д.Ч. Босом. Он показывает, что резкое повышение температуры вызывает в семенах появление токов действия. Для опыта нужны несколько зеленых (несозревших) семян гороха посевного (бобов, фасоли), гальванометр, препаровальная игла, спиртовка.

Соедините внешнюю и внутреннюю части зеленой горошины с гальванометром. Очень осторожно в бюксе нагрейте горошину (не повреждая) приблизительно до 60 °С.

При повышении температуры клеток гальванометр регистрирует разность потенциалов до 0,1–2 В. Вот что отметил по поводу этих результатов сам Д. Ч. Бос: если собрать 500 пар половинок горошин в определенном порядке в серии, то суммарное электрическое напряжение составит 500 В.

Самыми чувствительными у растений являются клетки точек роста, находящиеся на верхушках побегов и корней. Многочисленные, обильно ветвящиеся побеги и быстро нарастающие в длину кончики корней как бы ощупывают пространство и передают информацию о нем в глубь растения. Доказано, что растения воспринимают прикосновение к листу, реагируя на него изменением биопотенциалов, перемещением электрических импульсов, изменением скорости и направления передвижения гормонов. Например, кончик корня реагирует более чем на 50 механических, физических, биологических факторов и всякий раз при этом выбирает наиболее оптимальную программу для роста.

Убедиться в том, что растение реагирует на прикосновения, особенно частые, надоедливые, можно на следующем опыте.

42. Стоит ли трогать растения без надобности

Познакомьтесь с тигмонастиями – двигательными реакциями растений, вызванными прикосновениями.

Для опыта в 2 горшка высадите по одному растению, желательно без опушения на листьях (бобы, фасоль). После появления 1–2 листьев начинайте воздействие: листья одного растения слегка трите между большим и указательным пальцем 30–40 раз ежедневно в течение 2 недель.

К концу второй недели различия будет видны отчетливо: растение, подвергавшееся механическому раздражению, отстает в росте.

Влияние на рост растений механического воздействия

Результаты опыта свидетельствуют, что длительное воздействие на клетки слабыми раздражителями может привести к торможению процессов жизнедеятельности растений.

Постоянным воздействиям подвергаются растения, высаженные вдоль дорог. Особенно чувствительны ели. Их ветви, обращенные к дороге, по которой часто ходят люди, ездят машины, всегда короче ветвей, расположенных на противоположной стороне.

Раздражимость растений, т.е. их способность реагировать на разные воздействия, лежит в основе активных движений, которые у растений не менее разнообразны, чем у животных.

Перед тем как приступить к описанию опытов, раскрывающих механизм движения растений, целесообразно ознакомиться с классификацией этих движений. Если растения на осуществление движений затрачивают энергию дыхания, это физиологически активные движения. По механизму изгиба они подразделяются на ростовые и тургорные.

Ростовые движения обусловлены изменением направления роста органа. Это сравнительно медленные движения, например изгибы стеблей к свету, корней к воде.

Тургорные движения осуществляются путем обратимого поглощения воды, сжатия и растяжения специальных двигательных (моторных) клеток, расположенных у основания органа. Это быстрые движения растений. Они свойственны, например, насекомоядным растениям, листьям мимозы.

Более подробно типы ростовых и тургорных движений будут рассмотрены ниже по мере выполнения опытов.

Для осуществления пассивных (механических) движений прямых затрат энергии клетки не требуется. В механических движениях в большинстве случаев цитоплазма не участвует. Наиболее распространены гигроскопические движения, которые вызываются обезвоживанием и зависят от влажности воздуха.

Гигроскопические движения

В основе гигроскопических движений лежит способность оболочек растительных клеток к поглощению воды и набуханию. При набухании вода поступает в пространство между молекулами клетчатки (целлюлозы) в оболочке и белка в цитоплазме клетки, что приводит к значительному увеличению объема клетки.

43. Движения чешуй шишек хвойных, сухого мха, сухоцветов

Изучите влияние температуры воды на скорость движения семенных чешуй шишек.

Для опыта нужны по 2–4 сухие шишки сосны и ели, высушенные соцветия акроклиниума розового или гелихризума большого (бессмертники), сухой мох кукушкин лен, часы.

Рассмотрите сухую шишку сосны. Семенные чешуи подняты, хорошо видны места, к которым были прикреплены семена.

Опустите половину шишек сосны в холодную воду, а вторую – в теплую (40–50 °С). Наблюдайте за движением чешуй. Отметьте время, которое потребовалось для полного их смыкания.

Достаньте шишки из воды, стряхните и проследите за движением чешуй в процессе высыхания.

Отметьте время, за которое чешуи вернутся в исходное состояние, занесите данные в таблицу.

Объект наблюдения

Температура воды

Продолжительность

10 °С

50 °С

смыкания

размыкания

Шишки ели

Шишки ели

Соцветие бессмертника

Соцветие бессмертника

Повторите опыт с теми же шишками несколько раз. Это позволит не только получить более точные данные, но и убедиться в обратимости изучаемого вида движений.

Результаты опыта позволят сделать важные выводы.

  1. Движение семенных чешуй шишек обусловлено потерей и поглощением ими воды. Об этом же свидетельствует прямая зависимость движения чешуй от температуры воды: при ее повышении скорость движения молекул воды возрастает, набухание чешуй происходит быстрее.
  1. Чтобы набухание чешуй могло изменить их положение в пространстве, строение и химический состав клеток на внешней и внутренней стороне чешуи должны быть различными. Это действительно так. Оболочки клеток верхней стороны чешуй шишек хвойных более эластичны, растяжимы по сравнению с клетками нижней стороны. Поэтому при погружении в воду они поглощают ее больше, быстрее увеличивают свой объем, что приводит к удлинению верхней стороны и движению чешуи вниз. В процессе обезвоживания клетки верхней стороны теряют воду тоже быстрее клеток нижней стороны, что приводит к загибанию чешуи вверх.

Интересно наблюдать вызываемые набуханием движения листьев кукушкина льна либо других листостебельных мхов. У живых растений листья направлены в сторону от стебля, а у сухих – прижаты к нему. Если опустить сухой стебелек в воду, через 1–2 мин листья переходят из вертикального положения в горизонтальное.

Очень красивы движения высушенного соцветия бессмертника. Если сухое соцветие опустить в воду, через 1–2 мин листочки обертки приходят в движение и соцветие закрывается.

Задание. Сравните скорость движения чешуй шишек различных видов хвойных. Зависит ли она от размера шишек? Сравните скорость движения чешуй шишек сосны и ели, листьев мхов и листочков обертки соцветия бессмертника, выявите черты сходства и различия.

44. Гигроскопические движения семян. Гигрометр из семян аистника

Гигроскопические движения играют важную роль в распространении семян различных растений.

Изучите механизм самозакапывания семян аистника, перемещения по почве семян василька полевого.

Для опыта нужны семена аистника (грабельника), василька синего, лист плотной бумаги, часы, предметное стекло.

Аистник – распространенное в Белоруссии растение. Свое название получило благодаря сходству плода с головой аиста.

Рассмотрите внимательно строение сухого плода аистника. Доли зрелого коробочковидного плода снабжены длинной остью, в нижней части спирально закрученной. Плод покрыт жесткими волосками.

На предметное стекло нанесите каплю воды и опустите в нее сухой плод. Закрученная спиралью нижняя часть начинает раскручиваться, и плод, не имеющий опоры на стекле, совершает вращательные движения.

После полного выпрямления ости перенесите плод на сухую часть стекла. По мере высыхания нижняя часть снова закручивается в спираль и вызывает вращение плода.

Проведите хронометраж опыта, сравнивая скорости процессов раскручивания и закручивания спирали.

Механизм движения плода аистника тот же, что и чешуй шишек хвойных, – различие в гигроскопичности клеток ости.

Наблюдения за движением плода в капле воды позволяют понять поведение его в почве. Когда плод падает на землю, верхний конец ости, загнутый под прямым углом, цепляется за окружающие его стебельки и остается неподвижным. При закручивании и раскручивании спирального участка нижняя часть плода с семенем ввинчивается в землю. Путь назад преграждают жесткие, отогнутые вниз волоски, покрывающие плод.

Чтобы изготовить примитивный гигрометр, в кусочке картона или дощечке, покрытой белой бумагой, проделайте отверстие и закрепите в нем нижний конец плода. Для калибровки прибора сначала высушите, затем смочите ость водой и отметьте крайнее положение. Размещать прибор лучше на улице, где колебания влажности выражены более резко, чем в помещении.

Аистник – не единственное растение, способное к самозакапыванию семян. Сходное строение и механизм распространения имеют ковыли, овсюг, лисохвост.

Плоды василька (семянки с хохолком из твердых щетинок) не способны к самозакапыванию. При колебаниях влажности почвы щетинки попеременно опускаются и поднимаются, толкая плод вперед.

Задание. Соберите семена василька, лисохвоста, овсюга. Изучите поведение их во влажной и сухой среде, сравните с аистником.

Тропизмы

Умнейшее создание природы,

Всегда растущее из рода в роды –

В земле корнями, в небе – головой...

В. Рождественский

В зависимости от строения органа и действия факторов внешней среды различают два вида ростовых движений: тропизмы и настии .

Тропизмы (от греч. «тропос» – поворот), тропические движения – это движения органов с радиальной симметрией (корень, стебель) под влиянием факторов внешней среды, которые действуют на растение односторонне. Такими факторами могут быть свет (фототропизм), химические факторы (хемотропизм), действие силы земного тяготения (геотропизм), магнитное поле Земли (магнитотропизм) и др.

Эти движения позволяют растениям располагать листья, корни, цветки в положении, наиболее благоприятном для жизнедеятельности.

45. Гидротропизм корня

Одно из наиболее интересных видов движения – движение корня к воде (гидротропизм). Наземные растения испытывают постоянную потребность в воде, поэтому корень всегда растет в ту сторону, где содержание воды выше. Гидротропизм присущ прежде всего корням высших растений. Наблюдается также у ризоидов мхов и заростков папоротников. Для опыта нужно 10–20 наклюнувшихся семян гороха (люпина, ячменя, ржи), 2 чашки Петри, немного пластилина.

Плотно прикрепленным ко дну пластилиновым барьером разделите площадь чашки на 2 равные части. На барьер положите наклюнувшиеся семена, слегка вдавливая их в пластилин, чтобы при росте корня семена не сдвинулись с места. Корешки должны быть направлены строго вдоль барьера (рис. 24).

Схема расположения семян при изучении гидротропизма корня

Эти этапы работы в контрольной и опытной чашках одинаковы. Теперь предстоит создать различные условия увлажнения. В контрольной чашке влажность в левой и правой частях должна быть одинакова. В опытной чашке вода наливается только в одну половину, а вторая остается сухой.

Обе чашки накройте крышками и поместите в теплое место. Ежедневно наблюдайте за положением корешков. Когда ориентация их станет хорошо заметной, подсчитайте количество семян, корни которых проявили положительный гидротропизм (рост органа в сторону воды).

Наблюдения за движением корешка к воде ясно показывают, что тропизмы – это ростовые движения. Корешок растет в сторону воды, при этом происходит, если это необходимо растению, изгиб корня.

Задание. По описанной выше схеме опыта проверьте способность растений распознавать не только воду, но и нужные растению растворы минеральных солей, например 0,3%-ный раствор нитрата калия или нитрата аммония.

46. Влияние силы земного тяготения на рост стебля и корня

Большинство растений растет вертикально. При этом главную роль играет не расположение их относительно поверхности почвы, а направление радиуса Земли. Именно поэтому на горных склонах растения растут под любым углом к почве, но вверх. Главный стебель обладает отрицательным геотропизмом – он растет в сторону, противоположную действию силы земного тяготения. Главный корень, напротив, обладает положительным геотропизмом.

Наиболее интересно поведение боковых побегов и корней: в отличие от главного корня и стебля они способны расти горизонтально, обладая промежуточным геотропизмом. Побеги и корни второго порядка вообще не воспринимают действие силы земного тяготения и способны расти в любом направлении. Неодинаковое восприятие побегами и корнями различных порядков действия силы земного тяготения позволяет им равномерно распределяться в пространстве.

Чтобы убедиться в противоположной реакции главного стебля и главного корня на одно и то же воздействие силы земного тяготения, можно поставить следующий опыт.

Для опыта нужны наклюнувшиеся семена подсолнечника посевного, пластинки из стекла и пенопласта 10х10 см, фильтровальная бумага, пластилин, стакан.

На пластинку из пенопласта положите несколько слоев увлажненной фильтровальной бумаги. Наклюнувшиеся семена разместите на ней так, чтобы их острые концы были направлены вниз. По углам пластинки прикрепите кусочки пластилина. Положите на них, слегка прижимая, стеклянную пластинку, чтобы зафиксировать семена в нужном положении. Оберните несколькими слоями увлажненной фильтровальной бумаги и в вертикальном положении (острые концы семян должны быть направлены вниз) поместите в теплое место.

Когда корешки достигнут 1–1,5 см, пластинку переверните на 90°, чтобы корешки были расположены горизонтально.

Ежедневно контролируйте состояние проростков. Фильтровальная бумага должна быть влажной.

Проведите хронометраж опыта и отметьте время (в сутках от начала опыта) проявления геотропического изгиба.

Результаты опыта свидетельствуют, что при любом положении проростка в пространстве главный корень всегда изгибается вниз, а стебель – вверх. Причем ответная реакция осевых органов на изменение положения в пространстве может проявиться довольно быстро (1–2 ч).

Геотропическая чувствительность растений высока, некоторые способны воспринимать отклонение от вертикального положения на 1°. Проявление ее зависит от сочетания внешних и внутренних условий. Под влиянием низкой температуры воздуха отрицательный геотропизм стеблей может переходить в поперечный, что приводит к их горизонтальному росту.

Каким же образом стебель или корень «ощущают» свое положение в пространстве? У корня зона, воспринимающая геотропическое раздражение, находится в корневом чехлике. Если его удалить, геотропическая реакция затухает. В стебле силы земного тяготения также воспринимаются верхушкой.

Непосредственный изгиб корня или стебля осуществляется ниже, в зоне, где клетки проходят растяжение. При этом под действием одного и того же фактора – силы земного тяготения – в горизонтально лежащем стебле усиливается рост клеток нижней стороны, что приводит к изгибу его вверх, в корне же – рост клеток верхней стороны и изгиб вниз.

Задание. Изучите характер геотропической реакции стеблей разного порядка двудольного растения. Для этого вырастите проростки, закройте поверхность почвы, чтобы она не высыпалась, и переверните горшки. Наблюдения ведите до тех пор, пока не появятся боковые стебли первого и второго порядка.

47. Влияние этилена на геотропическую реакцию проростков гороха

Рост растений регулируется не только биоэлектрическими сигналами, но и гормональной системой. Главную роль в регуляции скорости роста играет количественное содержание гормона ауксина и его взаимодействие с другими гормонами, в частности абсцизовой кислотой и этиленом.

В отличие от стимулирующего рост ауксина абсцизовая кислота тормозит деление клеток нижней стороны органа. Это вызывает замедление ее роста, и корень начинает изгибаться по направлению к центру Земли.

Для опыта нужны зрелые яблоки (источник этилена), 2 стеклянных колпака, 2 горшка с проростками гороха.

Стеклянные колпаки установите на подставку. Под ними разместите горшки с 2–3-дневными проростками гороха. В опытном варианте под колпак положите яблоки. Растения поставьте в темноту.

По мере накопления этилена в воздухе он начинает проникать в проростки гороха. Через несколько дней становятся заметны нарушения нормальной отрицательной геотропической реакции побегов, которые начинают расти горизонтально, а при высокой концентрации этилена в воздухе даже полегают.

Результаты опыта свидетельствуют о регуляторных функциях этилена в жизни растений. Увеличение его содержания в клетках приводит к изменению скорости их роста.

Задание. Изучите влияние этилена на рост проростков томатов.

Естественно, геотропическая ориентация органов растений в непрерывно меняющихся условиях среды не может всегда оставаться постоянной. По мере формирования и распускания бутонов изменяется ориентация цветоножки, например у мака. Молодые ветки ели растут под более острым углом, чем старые.

Можно изучить смену отрицательного геотропизма цветоножек арахиса (земляного ореха) на положительный, вырастив его в комнатных условиях. После отцветания цветоножка арахиса, на которой сидит завязь, удлиняется, загибается к земле и углубляется в нее. Таким образом, цветки находятся над землей, а плоды созревают в земле. Хотя это ограничивает способность вида к распространению, созревшие семена находятся в идеальных условиях для прорастания.

Вопрос 1. Дайте определения понятий «на-следственность» и «изменчивость».

Наследственность — это способность живых организмов передавать свои признаки, свойства и особенности развития следующему поколению. Она обеспечивает материальную и функциональную преемственность поколений, является причиной того, что новое поколение похоже на предыдущее. В основе наследова-ния признаков лежит передача потомству ге-нетического материала.

Изменчивость — это способность живых организмов существовать в различных фор-мах, т. е. приобретать в процессе индивидуаль-ного развития признаки, отличные от качеств других особей того же вида, в том числе и сво-их родителей. Изменчивость может опреде-ляться особенностями генов особи, их сочета-нием и т. п., а может — взаимодействием осо-би и окружающей среды. В последнем случае даже генетически одинаковые организмы спо-собны приобретать в процессе онтогенеза раз-ные признаки и свойства.

Вопрос 2. Кто впервые открыл закономерности наследования признаков?

Первым человеком, который открыл зако-номерности наследования признаков, был авст-рийский ученый Грегор Мендель (1822-1884). Будучи монахом монастыря в Брюнне (Брно, современная Чехия), он в течение восьми лет (1856-1863) скрещивал разные сорта гороха. В 1865 г. Г. Мендель на заседании Общества ес-тествоиспытателей г. Брюнна доложил о ре-зультатах своих экспериментов. Работа была оценена по достоинству лишь после 1900 г., когда три ботаника (Гуго де Фриз в Голландии, Карл Корренс в Германии и Эрих Чермак в Ав-стрии) независимо друг от друга заново откры-ли закономерности наследования.

Вопрос 3. На каких растениях проводил опыты Г. Мендель?

Мендель проводил опыты на разных сортах посевного гороха. Для своих экспериментов он использовал 22 сорта гороха, отличающихся по семи признакам. Всего за время исследова-ний он изучил более десяти тысяч растений.

Вопрос 4. Благодаря каким особенностям орга-низации работы Г Менделю удалось открыть законы наследования признаков?

Грегору Менделю удалось открыть законы наследования признаков благодаря следую-щим особенностям своей работы: Материал с сайта

  • экспериментальным растением являлся горох — неприхотливое растение, обладающее большой плодовитостью и дающее несколько урожаев в год;
  • горох является самоопыляющимся растени-ем, что позволяет избегать случайного попада-ния посторонней пыльцы. Мендель во время экс-периментов по перекрестному опылению удалял тычинки и кисточкой переносил пыльцу одного родительского растения на пестик другого;
  • Мендель исследовал качественные, четко различимые признаки, каждый из которых контролировался одним геном;
  • при обработке данных ученый вел строгий количественный учет всех растений и семян.

Не нашли то, что искали? Воспользуйтесь поиском

На этой странице материал по темам:

  • г.мендель - основоположник генеткики
  • генетические закономерности открытые менделем
  • Генетика - наука о закономерностях наследственности и изменчивости. Г. Мендель – основоположник генетики
  • благодарям каким особенностям организации работы г менделю удалось открыть законы наследования признаков
  • дайте определение понятий генетика

Мендель, родившийся в 1822 г. в Чехии в бедной крестьянской семье, страстно желал быть учителем и ученым. В 1843 г. он стал послушником августинского монастыря (там он получил новое имя Грегор). В монастырском училище он изучал богословие и древневосточные языки, слушал лекции по естествознанию в Брюннском философском институте, увлекался минералогическими и ботаническими коллекциями. Дополнительное обучение Мендель проходил в Венском университете.

Вернувшись из Вены, исследователь приступил к четко спланированному научному эксперименту. Его очень интересовало поистине удивительное проявление наследственности.

Для опытов он выбрал обычный посевной горох. В отличие от предшественников Мендель поставил задачу изучить наследование не целого комплекса, а отдельных, явно различающихся признаков. Это сужало круг вопросов, зато давало возможность получить более четкие результаты. На проведение запланированного эксперимента Мендель затратил десять лет.

Выбор гороха как объекта исследований обусловлен удобством его выращивания, большим разнообразием форм, способностью к самооплодотворению. Пыльца из пыльников попадает на рыльце того же самого цветка до того, как он раскроется, - таким образом одно растение является одновременно и отцовским, и материнским.

При перекрестном оплодотворении пыльцу переносят насекомые или ветер. У гороха, как и у всех самооплодотворяющихся растений, возможно только искусственное перекрестное оплодотворение. В цветках материнских растений удаляют пыльники до того, как из них высыпается пыльца. Затем собирают пыльцу из отцовского растения и переносят ее кисточкой на рыльце материнского. В этом случае горошина - потомство разных растений.

Вся экспериментальная работа Менделя с горохом отличалась высокой тщательностью и последовательностью наблюдений. За два года он проверил чистоту 34 сортов. Для каждого опыта исследователь отбирал два сорта, различающиеся по паре признаков. Всего было исследовано семь признаков. Это окраска семядолей (желтая или зеленая), семенной кожуры (белая или цветная) и незрелых бобов (зеленая или желтая), форма зрелых семян (округлая или угловатая) и зрелых бобов (выпуклая или с глубокими перехватами между семенами), расположение цветков (пазушное или верхушечное), высота стебля (высокий или низкий).

Мендель провел семь скрещиваний между растениями, отличающимися друг от друга по одному признаку. В каждом случае потомство первого поколения напоминало одного из родителей и не имело признака другого родителя. Подавление у гибридных организмов одних признаков другими получило название доминирования. Именно Мендель ввел термин «доминантный» (подавляющий) - для признака, который выявлялся в потомстве, - и «рецессивный» (подавляемый) - для признака, казавшегося исчезнувшим. Так, округлые горошины желтого цвета, зеленая окраска незрелых бобов - доминантные признаки, а морщинистая горошина зеленого цвета, желтая окраска незрелых бобов - рецессивные.

По мнению Менделя, оба признака каким-то образом присутствуют у потомства, но доминантный подавляет рецессивный, и тот находится в скрытом состоянии. Такое предположение может быть подтверждено при анализе растений второго поколения. Мендель высеял гибридные семена от каждого растения отдельно. На этот раз ему не пришлось выполнять трудоемкие скрещивания. В цветках гороха происходило самооплодотворение. В то время как у растений первого поколения семена были только желтые, во втором поколении появлялись растения и с желтыми, и с зелеными. Подобное наблюдалось и при анализе потомств остальных шести типов скрещивания. Во всех случаях была выявлена определенная закономерность появления во втором поколении растений с доминантными и рецессивными признаками.

В результате многочисленных опытов Мендель четко установил, что во втором поколении соотношение растений с доминантными и рецессивными признаками равно 3:1. Три части составляют растения с желтыми семенами и одну - с зелеными. В последующих поколениях у одних растений с желтыми семенами вновь наблюдается расщепление все в том же соотношении, а у других образуются только желтые семена. Растения с рецессивным признаком - зеленые, морщинистые семена, желтая окраска незрелых бобов - не расщепляются в последующих поколениях, все потомство оказывается однородным.

Мендель не только продолжал изучать поведение признака в течение семи поколений, но и многократно повторял опыты. Во всех случаях результаты были одинаковыми. На основании этого ученый сформулировал основные закономерности наследования признаков. Это прежде всего правило единообразия гибридов первого поколения, или закон доминирования, и правило (закон) расщепления во втором поколении.

Наследование признаков по схеме 3:1 названо расщеплением по фенотипу, т. е. по внешнему виду, по видимым признакам. У растений гороха во втором поколении наблюдаются три четверти «смешанных» желтых семян и четверть «чистых» зеленых. «Чистые» желтые семена не пропали вовсе, а входят в число трех четвертей растений с такими признаками. Поставив в равноправное положение семена желтого цвета и гладкой формы с зелеными, морщинистыми, мы преобразуем соотношение потомств второго поколения 3:1 в более правильное 1:2:1, названное расщеплением по генотипу. Под генотипом подразумевают наследственную основу, комплекс наследственных единиц-генов, обусловливающих развитие всех признаков организма. Новое соотношение растений с разными признаками показывает, что половину потомства второго поколения составляют гибриды, которые в дальнейшем расщепляются, а другая половина состоит из нерасщепляющихся (чистых) растений - четверть с доминантными признаками и четверть с рецессивными.

Одна из важнейших особенностей работы Менделя - перевод биологических законов на математический язык. Для математического анализа передачи признаков по наследству он предложил буквенную символику при обозначении наследственных факторов. Доминантный признак - желтый цвет, гладкая форма семян и другие - обозначаются А, а рецессивный - а. Таким образом, группа растений с «чисто» желтым цветом семян выражается формулой АА, «чисто» зеленым - аа и смешанная - Аа. Соотношение разных типов растений во втором поколении по окраске семян записывается в виде АА:2Аа:аа. Константные формы АА и аа названы гомозиготными (одинаковыми), а расщепляющиеся Аа-гетерозиготными (разными, гибридными).

До сих пор речь шла о наследовании признака у потомств, родители которых различались по одному какому-либо признаку (окраске или форме семян, окраске бобов и т. д.). Но каждый из родителей имеет весь набор исследуемых признаков, поэтому важно знать, какие из них проявляются в потомстве. На следующем этапе работы Мендель использовал родителей, отличающихся друг от друга по двум признакам - окраске и форме семян. Поскольку желтый цвет и гладкая форма семян - доминантные признаки, а зеленый цвет и морщинистая форма семян - рецессивные, в первом поколении все семена будут желтые и гладкие.

После самоопыления во втором поколении у растений гороха наблюдаются все четыре возможные комбинации признаков. Обе пары признаков расщепляются совершенно независимо друг от друга, давая общее расщепление 9:3:3:1. На каждые 16 семян в среднем должно приходиться девять желтых гладких, три желтых морщинистых, три зеленых гладких и одно зеленое морщинистое. Если обозначить признак окраски семян буквами А и а, а форму семян - В и в, потомство первого поколения гибрида будет иметь формулу АаВв.

Скрещивание родителей, различающихся по двум парам признаков, названо ди-, по трем - три-, по многим признакам - полигибридным. Анализ потомств от скрещивания растений гороха, отличающихся более чем по одной паре признаков, позволил Менделю сформулировать третий закон - закон независимого комбинирования (различные признаки наследуются независимо друг от друга).

Установленные ученым законы наследственности имеют общебиологическое значение. Они были подтверждены многочисленными исследованиями на различных видах растений и животных. В отличие от существовавших ранее представлений о слитности родительских признаков в потомстве или о мозаичности их наследования - одни признаки приобретаются от матери, другие от отца - Мендель показал дискретный характер наследственности. В самом деле, если бы при скрещивании наследственные признаки родителей не сохранялись в потомстве, а «растворялись» или «смешивались», то невозможен был бы естественный отбор.

Мендель не только сформулировал законы наследственности, но и правильно объяснил их при тогдашнем уровне науки. Установив, что наследуется не вся совокупность свойств, а отдельные признаки, он связал их с отдельными «наследственными задатками», или «факторами», находящимися в половых клетках. Предшественники исследователя открыли пол у растений и показали, что образование гибридных организмов происходит при слиянии мужских и женских половых клеток.

Если предположить, что каждый из родителей передает потомкам по одному фактору каждого сорта, то каждый из них будет иметь два фактора - один от отца, другой от матери, в следующем поколении - четыре и т. д. И через какое-то время у растений будет множество факторов, определяющих каждый признак (окраску и форму семян, бобов и т.д.). Поняв абсурдность такого предположения, Мендель приходит к выводу, что у каждого из родителей есть по два фактора каждого сорта и в зародыш попадает по одному из них. Так, желтоокрашенные семена гороха имеют факторы АА, а зеленоокрашенные - аа. Если родители отличались такими окрасками, то формула гибридов будет иметь вид Аа.

При размножении подобных гибридов у них образуются два типа половых гамет: одни будут иметь фактор А, другие - а. В зависимости от того, в каких сочетаниях будут объединяться эти типы гамет, в ходе оплодотворения могут образовываться гибридные (Аа) и родительские (АА и аа) растения. Объединение гамет обоих типов не приводит к их слиянию или смешению в гибридном организме. Гены А и а остаются у гибридов такими же индивидуальными, какими они были у родительских форм. Это было названо чистотой гамет для каждой пары генов.

В работе Менделя наследственные факторы не связывались с какими-либо конкретными материальными структурами клетки и процессами клеточного деления. Дальнейшие исследования, связанные с выяснением роли хромосом в наследственности, полностью подтвердили правильность выдвинутой гипотезы чистоты гамет. Таким образом, задолго до разработки хромосомной теории наследственности было предсказано существование отдельных материальных задатков (генов) и равное распределение наследственного материала при образовании половых клеток. Принципы чистоты гамет легли в основу современной генетики и способствовали укреплению позиций дарвиновского эволюционного учения.

Кратко описывающую основные этапы «разоблачения» опытов Грегора Иоганна Менделя. Имя этого ученого присутствует во всех школьных учебниках биологии, так же как и иллюстрации его опытов по разведению гороха. Мендель по праву считается первооткрывателем законов наследственности, которые стали первым шагом на пути к современной генетике.

Схема наследования признаков, выведенная Менделем

Учебник «Общая биология»

Масштабный эксперимент, проведенный интересовавшимся естественными науками монахом-августинцем, длился с 1856 по 1863 год. За эти несколько лет Мендель отобрал 22 сорта гороха, которые четко отличались между собой по определенным признакам. После этого исследователь приступил к опытам по так называемому моногибридному скрещиванию: Мендель скрещивал сорта, которые отличались друг от друга только цветом семян (одни были желтые, другие — зеленые).

Выяснилось, что

при первом скрещивании семена зеленого цвета «исчезают» — это правило получило название «закон единообразия гибридов первого поколения». Зато во втором поколении зеленые семена появляются снова, причем в соотношении 3:1.

(Мендель получил 6022 желтых семени и 2001 зеленое.) Исследователь назвал «победивший» признак доминантным, а «проигравший» — рецессивным, а выявленная закономерность стала известна как «закон расщепления».

Это правило означает, что 75% гибридов второго поколения будут обладать внешними доминантными признаками, а 25% — рецессивными. Что касается генотипа, то здесь соотношение будет следующим: 25% растений будут наследовать доминантный признак и от отца, и от матери, гены 50% будут нести в себе оба признака (проявится при этом доминантный — желтые горошины), а оставшиеся 25% окажутся полностью рецессивными.

Третий закон Менделя — закон независимого комбинирования — был выведен исследователем в ходе скрещивания растений, которые отличались друг от друга несколькими признаками. В случае с горохом это был цвет горошин (желтый и зеленый) и их поверхность (гладкая или морщинистая). Доминантными признаками были желтый цвет и гладкая поверхность, рецессивными — зеленая окраска и морщинистая поверхность. Грегор Мендель выяснил, что между собой эти признаки будут комбинироваться независимо друг от друга. При этом легко подсчитать, что по фенотипу — внешним признакам — потомство будет делиться на четыре группы: 9 желтых гладких, 3 желтых морщинистых, 3 зеленых гладких и 1 зеленая морщинистая горошина.

Если учитывать результаты расщепления по каждой паре признаков в отдельности, то получится, что отношение числа желтых семян к числу зеленых и отношение гладких семян к морщинистым для каждой пары равно 3:1.

В 1866 году результаты работы Грегора Менделя были опубликованы в очередном томе «Трудов Общества естествоиспытателей» под названием «Опыты над растительными гибридами», но у современников его работа интереса не вызвала. В 1936 году генетик-теоретик и статистик из Кембриджского университета Рональд Фишер заявил, что полученные Менделем результаты «слишком хороши, чтобы быть правдой». Однако обвинять исследователя в подтасовке фактов начал не он — судя по всему, первым это сделал Уолтер Уэлдон, биолог из Оксфордского университета. В октябре 1900 года, спустя несколько месяцев после возобновления интереса к работам Менделя, ученый написал в личном послании своему коллеге, математику Карлу Пирсону, что он наткнулся на исследование «некоего Менделя», который занимался скрещиванием гороха. На протяжении последующего года Уэлдон исследовал работу монаха и все более убеждался в том, что полученные Менделем пропорции не были бы такими «чистыми» при использовании реально существующих в природе — а не искусственно выведенных — сортов гороха.

Кроме того, биолога смутило и то, что Мендель оперировал бинарными категориями: желтый — зеленый, гладкий — морщинистый. По мнению Уэлдона, такое четкое разделение признаков весьма далеко от реальности: так, к какой категории исследователь относил семена желто-зеленого, неопределенного цвета?

Скорее всего, классифицировались они так, чтобы вписаться в предложенную модель, утверждал биолог, которому приводимые Менделем цифры — 5474 горошины с доминантным признаком из 7324 выращенных семян (то есть 74,7%, тогда как теоретически их должно было оказаться 75%) — показались слишком «хорошими». «Он либо лжец, либо волшебник», — так писал Уэлдон в письме Пирсону в 1901 году.

Иллюстрация из статьи Уэлдона 1902 года. Изображения наглядно демонстрируют, что не все семена можно классифицировать как «желтые», «зеленые», «гладкие» или «морщинистые»

Science. W. F. R. Weldon, 1902.

Впрочем, некоторые из тех, кто нашел результаты Менделя неправдоподобно хорошими, все же решили выступить в его защиту — одним из таких ученых стал и Рональд Фишер. Он заявил, что теоретическая модель наследования признаков должна была родиться непосредственно после начала экспериментов — а разработать ее мог только действительно выдающийся ум. Тщательно подготовленной иллюстрацией теории опыты, по мнению Фишера, стали позже, причем «подтасовывать» результаты разведения гороха мог не сам ученый, а ухаживавшие за растениями садовники, которые были знакомы с теоретическими выкладками исследователя.

К середине ХХ века дебаты вокруг вопроса о соблюдении Менделем научной этики несколько утихли — связано это было с тем, что генетика в то время находилась под сильным влиянием политических факторов, в частности, засилья «лысенковщины» в Советском Союзе.

В этих условиях западные ученые предпочитали не высказывать вслух сомнений в достоверности опытов Менделя, и тема была забыта, однако, по всей видимости, лишь на время.

Авторы статьи в Science еще раз утверждают, что приводимые им цифры слишком хороши, чтобы быть правдой, классификация признаков лишь по двум категориям не оправданна, а также соглашаются с тем, что монах мог считать желтые горошины как зеленые, если это лучше вписывалось в теорию. Тем не менее заслуги ученого это не умаляет: сформулированные им законы действительно работают, а их открытие стало первой ступенью развития современной генетики.

Достижения:

Профессиональная, социальная позиция: Мендель — австрийский ботаник, августинский монах, игумен, аббат.

Основной вклад (чем известен): Мендель — австрийский ботаник, который открыл основополагающие принципы наследственности и заложил основы современной генетики. Его теория является одной из базовых систем биологии.
Вклады: Мендель показал, что наследование этих признаков подчиняется определенным законам, которые теперь называются.
Законами Менделя о наследственности и, которые описывают порядок передачи наследственных признаков из поколения в поколение:
Закон единицы символов (генов) говорит, что характеристики индивидуальности находятся под контролем наследственных факторов, пар элементарных единиц,которые теперь известных как гены.
Закон доминирования говорит , что некоторые унаследованные факторы доминируют и может маскировать другие, рецессивные факторы.
Закон расщепления (сегрегации) говорит, что факторы пары разделяются во время воспроизведения, так что только один из факторов влияет на потомство.
Закон независимого комбинирования, который говорит, что индивидуальные черты организма передаются независимо друг от друга.
Принцип неполного доминирования, гласит, что для некоторых характеристик ни один из генов не является доминирующим.
Он опубликовал свои результаты в 1865 г., но его работы были проигнорированы. Важность работ Менделя не была признана вплоть до 1900 года, когда три ботаника, Карл Эрих Корренс, Эрих фон Чермак и Гуго де Фриз, работающие независимо друг от друга пришли к аналогичным выводам, и в процессе этого, открыли его работы.
На протяжении 1930-х и 1940-х годов была создана современная синтетическая теория объединяющая менделевскую генетику с теорией Дарвина о естественном отборе.
Его система оказалась обще применимой и является одной из базовых систем биологии.
Основные труды: Versuche über Pflanzen-Hybride «Трактаты о растительных гибридах», 1865.

Жизнь:

Происхождение: Грегор Мендель родился 20 июля 1822 г. в семье этнических немцев в Хейнцендорфе, Австрийской империи и был крещен два дня спустя. Он был сыном Антона и Розины Менделя и имел одну старшую сестру Веронику, а также младшую Терезию. Его предки были фермерами и его отцу приходилось тяжело работать как крепостному. Уже тогда Мендель проявлял большую любовь к природе и пронес эту любовь через всю свою жизнь. В детстве Мендель много работалв саду и изучал пчеловодство.
Образование: В 1831 году он был направлен в школу пиаристов в Липнике и в возрасте 12 лет в гимназию в Oпава (Троппау). В молодости в 1840-1843 годах он учился в Философском институте в г. Ольмюц. С 1844 по 1848 г. он учился в Брюннском богословском институте, а позже в Венском университете.
Основные этапы профессиональной деятельности: Между 1856 и 1865 гг. он провел ряд экспериментов с растениями гороха и его открытия стали математическим обоснованием основ генетики.
По рекомендации своего учителя физики Фридриха Франца, он в 1843 году поступил в монастырь августинцев Св.Томаса (Св. Фомы) в Брюнне. Урожденный Иоганн Мендель, при вступлении в монашество взял имя Грегор. В 1847 году он был рукоположен в священники и служил в течение короткого времени в качестве викария в монастыре Старого Брюнне.
В 1851 он был отправлен на обучение в Венский университет и в 1853 году возвратился к себе в аббатство как учитель, главным образом физики. В то время августинцы преподавали философию, иностранные языки, математику и естественные науки в средних школах и университетах.
В это время наряду с преподаванием и богословскими исследованиями, Мендель обучался сельскому хозяйству, плодоводству и виноградарству в Институте философии в Брюнне. Окруженный атмосферой динамической активности, Мендель нашел оптимальные условия для учебы, а затем и для своей исследовательской работы. Он был вдохновлен своими университетскими профессорами и его коллегами из монастыря, на проведение исследований изменений в растениях. Свои основные исследования он проводил с 1856 по 1865 год в саду своего монастыря.
В 1868 году Мендель стал настоятелем монастыря Святого Фомы и больше не занимался научными исследованиям. В свое свободное время, на протяжении 10 лет, он вырастил по меньшей мере 29 000 растений гороха. Он заботливо осуществлял их перекрестное опыление, упаковывая их для защиты от случайного оплодотворения, а затем описывал вырастающие из семян растения.
Он каталогизировал последующие поколения гороха со статистической точностью, стараясь определить причины возникновения таких различных признаков как, высота (высокие или короткие), цветочные цвета (зеленый или желтый) и форму при воспроизведении.
Основные этапы личной жизни: Мендель был добродушным и бесконфликтным человеком. Его очень любили прихожане, ученики и монахи. Он никогда не был женат и не имел детей.
Мендель умер 6 января 1884 года, в возрасте 61 года, в Брно, Моравия, Австро-Венгрия (ныне Чехия).
Изюминка : С сорока лет и до конца дней Мендель страдал от избыточного веса. В его монастырской квартире был устроен маленький зверинец. Чарльз Дарвин не был знаком с работами Менделя. Мендель умер так и не зная, что он станет известен как отец генетики. После его смерти, его преемник аббат сжег все документы из коллекции Менделя, чтобы избежать налогообложения.